Implementation Development for Multi - Dimensional Two - Phase Owmodeling
نویسنده
چکیده
4 Q B A multi-faceted instrumentation approach is described which has played a significant role in ob*ing fundamental data for two-phase flow model development. This experimental work supports the development of a three-dimensional, two-fluid, four field computational analysis capability. The god of this development is to utilize mechanistic models and fundamental understanding rather than rely on empirical correlations to describe the interactions in two-phase flows. The four fields (two dispersed and two continuous) provide a means for predicting the flow topology and the local variables over the full range of flow regimes. The fidelity of the model development can be verified by comparisons of the three-dimensional predictions with local measurements of the flow variables. Both invasive and non-invasive instrumentation techniques and their strengths and limitations are discussed. A critical aspect of this instrumentation development has been the use of a low pressudtemperature modeling fluid (R-134a) in a vertical duct which permits full optical access to visualize the flow fields in all two-phase flow regimes. The modeling fluid accurately simulates boiling steam-water systems. Particular attention is focused on the use of a gamma densitometer to obtain line-averaged and cross-sectional averaged void fractions. Hot-film anemometer probes provide data on local void fraction, interfacial frequency, bubble and droplet size, as well as information on the behavior of the liquid-vapor interface in annular flows. A laser Dopplervelocimeter is used to measure the velocity of liquidvapor interfaces in bubbly, slug and annular flows. Flow visualization techniques are also used to obtain a qualitative understanding of the two-phase flow structure, and to obtain supporting quantitative data on bubble size. Examples of data obtained with these various measurement methods are shown.
منابع مشابه
Development of a phase change model for volume-of-fluid method in OpenFOAM
In this present study, volume of fluid method in OpenFOAM open source CFD package will be extended to consider phase change phenomena with modified model due to condensation and boiling processes. This model is suitable for the case in which both unsaturated phase and saturated phase are present and for beginning boiling and condensation process needn't initial interface. Both phases (liquid-va...
متن کاملNumerical Computation Of Multi-Component Two-Phase Flow in Cathode Of PEM Fuel Cells
A two-dimensional, unsteady, isothermal and two-phase flow of reactant-product mixture in the air-side electrode of proton exchange membrane fuel cells (PEMFC) is studied numerically in the present study. The mixture is composed of oxygen, nitrogen, liquid water and water vapor. The governing equations are two species conservation, a single momentum equation for mobile mixture, liquid mass cons...
متن کاملConstructing Two-Dimensional Multi-Wavelet for Solving Two-Dimensional Fredholm Integral Equations
In this paper, a two-dimensional multi-wavelet is constructed in terms of Chebyshev polynomials. The constructed multi-wavelet is an orthonormal basis for space. By discretizing two-dimensional Fredholm integral equation reduce to a algebraic system. The obtained system is solved by the Galerkin method in the subspace of by using two-dimensional multi-wavelet bases. Because the bases of subs...
متن کاملExperimental study and numerical simulation of three dimensional two phase impinging jet flow using anisotropic turbulence model
Hydrodynamic of a turbulent impinging jet on a flat plate has been studied experimentally and numerically. Experiments were conducted for the Reynolds number range of 72000 to 102000 and a fixed jet-to-plate dimensionless distance of H/d=3.5. Based on the experimental setup, a multi-phase numerical model was simulated to predict flow properties of impinging jets using two turbulent models. Mesh...
متن کاملA Boundary Elements and Particular Integrals Implementation for Thermoelastic Stress Analysis
A formulation and an implementation of two-dimensional Boundary Element Method (BEM) analysis for steady state, uncoupled thermoelastic problems is presented. This approach differs from other treatments of thermal loads in BEM analysis in which the domain integrals due to the thermal gradients are to be incorporated in the analysis via particular-integrals. Thus unlike Finite Elements or Field ...
متن کامل